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A B S T R A C T  

In this paper we describe polynomials orthogonal to all powers of a 
Chebyshev polynomial on a segment. 

1. I n t r o d u c t i o n  

In the recent series of papers [1]-[5] by M. Briskin, J.-P. Francoise and Y. 

Yomdin the following "polynomial moment problem" arose as an infinitesimal 

version of the center problem for the Abel differential equation in the com- 

plex domain: /or a complex polynomial P(z)  and distinct a, b E C to describe 

polynomials q(z) such that 

// (1) Pi(z)q(z)dz = 0 for all integers i >_ 0. 

The following "composition condition" imposed on P(z)  and Q(z) = f q(z)dz 

is sufficient for polynomials P(z) ,q(z)  to satisfy (1): there exist polynomials 

P(z), O(z), W(z) s~eh that 

(2) P(z)  =/5(W(z)) ,  Q(z) = Q(W(z))  and W(a) = W(b). 

Indeed, the sufficiency of condition (2) is a direct corollary of the Cauchy the- 

orem, since after the change of variable z -+ W(z)  the new way of integration 
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is closed. It was suggested in the papers cited above ("the composition conjec- 

ture") that,  under an additional assumption that P(a) = P(b), condition (1) 

is actually equivalent to condition (2). This conjecture was verified in several 

special cases. In particular, when a, b are not critical points of P(z) ([6]), when 

P(z) is indecomposable ([8]), and in some other special cases ([1]-[5], [11], [9]). 

Nevertheless, in general the composition conjecture is not true. 

A class of counterexamples to the composition conjecture was constructed in 

[7]. The simplest of them has the following form: 

P(z) = T6(z), q(z) = T~(z) + T~(z), a = -x/3/2,  b = v/3/2, 

where Tn(z) = cos(n arccos z) is the n-th Chebyshev polynomial. Indeed, since 

T~(v~/2) = T2(-v/3/2)  it follows from the equality Ta(z) = T3(T2(z)) that  

(1) is satisfied for P(z) = T6(z) and ql(z) = T~(z). Similarly, from T6(z) = 

T2(T3(z)) and T3(v~/2)  = T n ( - v ~ / 2 )  one concludes that (1) holds for P(z) = 
T6(z) and q2(z) = T~(z). Therefore, by linearity, condition (1) is satisfied also 

for P(z) = T6(z) and q(z) = ql(z) + as(z). Nevertheless, for P(z) = T6(z) and 

Q(z) = T3(z) + T2(z) condition (2) does not hold. 

More generally, it was shown in [7] that any polynomial "double decompo- 

sition" A(B(z)) = C(D(z)) such that B(a) = B(b), D(a) = D(b) supplies 

counterexamples to the composition conjecture whenever degB(z) ,  degD(z)  

are coprime. Note that double decompositions with degA(z) = degD(z) ,  

deg B(z) = deg C(z) and deg B(z), deg D(z) coprime are described explicitly by 

Ritt 's  theory of factorization of polynomials. They are equivalent either to de- 
compositions with A(z) = znRm(z), B(z) = z m, C(z) = z "~, D(z) = znR(z ra) 
for a polynomial R(z) and (n, m) = 1 or to decompositions with A(z) = Tm(Z), 
B(z) = Tn(z), C(z) = T~(z), D(z) = T,~(z) for Chebyshev polynomials Tn(z), 

and = 1 (see [10], [12]). 
In this paper we give a solution of the polynomial moment problem (1) in 

the case when P(z) is a Chebyshev polynomial Tn(z). Denote by V(T~, a, b) 
the vector space over C consisting of complex polynomials q(z) satisfying (1) 

for P(z) = Tn(Z). Note that  any polynomial T~m(Z) such that Td(a) = Td(b) 

for d = GCD(n, m) is contained in V(Tn, a, b) since T~(z) = Tn/d(Td(z)) and 

Tin(z) = T,~/d(Td(z)). 

THEOREM 1: For any n C N and a, b C C, polynomials T~m(Z) such that Td(a) = 
Td(b) for d = GCD(n, m) form a basis of V(Tn, a, b). 

For instance, it follows from the theorem that if a polynomial q(z) is orthog- 

onal to all powers of T6(z) on [ - v ~ / 2 ,  x/3/2], then fq(z)dz  can be uniquely 
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represented as a finite sum 

S q(z)dz = E akT6k(z)+ EbkT6k+2(z)+ E ckT6k+3(z)+ E dkT6k+4(z) 
k k k k 

for some ak,bk,ck,dk E C. 
Theorem 1 implies the following corollary. 

COROLLARY: Non-zero polynomials orthogonal to all integer non-negative 
powers of Tn(z) on [a,b] exist if and only ifTn(a) = Tn(b). 

Indeed, for din condition Td(a) = Td(b) implies that T~(a) = Tn(b) since 

Tn(z) = T~/d(Td(z)). On the other hand, if Tn(a) = T~(b) then for any R(z) E 
C[z] the polynomial R(Tn(z))T~(z) is contained in V(Tn, a, b) by (2). 

Furthermore, Theorem 1 implies that if q(z) E V(Tn, a, b) then f q(z)dz can 

be represented as a sum of polynomials Qy such that condition (2) holds for 

P(z) = T~(z), Q(z) = Qj(z). We show that actually the number of terms in 

such a representation can be reduced to two. 

THEOREM 2: For any q(z) E V(T~, a, b) there exist divisors dl, d2 ofn such that 
f q(z)dz = A(Tdl (z)) + B(Td2 (z)) for some A(z), B(z) E C[z] and the equalities 
Tdl (a) = Td, (b), Td2 (a) ---- Td2 (b) hold. 

For instance, if a polynomial q(z) is orthogonal to all powers of T6(z) on 

[ -v~ /2 ,  x/~/2] then f q(z)dz = A(T3(z) )+B(T2(z)) for some A(z), B(z) e C[z]. 

Note that such a representation in general is not unique, in contrast to the one 

provided by Theorem 1. 

2. P roof s  

2.1 REDUCTION. First of all, we establish that Theorem 1 can be reduced to 

the following statement: if q(z) = Q'(z) is contained in V(Tn, a, b), then 

(3) Td(a) = Td(b) for d : GCD(n, deg Q). 

In particular, d > 1. 
Indeed, assuming that this statement is true the theorem can be deduced as 

follows. For q(z) E V(Tn,a,b), set mo = degQ(z) and define Co E C by the 

condition that the degree of Ql(z) = Q(z) - coTmo(Z) is strictly less than m0. 

Since for do = GCD(n, m0) the equalities 
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hold, it follows from Tdo(a) = Tdo(b) that T~no(Z ) E V(Tn,a,b). Therefore, 

by linearity, Qtl(Z ) E V(T,~,a,b). If degQl(z)  = rnl then, similarly, for some 

Cml E C we have Ql(z) = cmlTml(Z) + Q2(z), where Qt2(z ) E V(Tn,a, b) and 

degQ2(z) < ml.  
Continuing in the same way and observing that mi+l < mi we eventually 

arrive at the representation 

k 

q(z)dz = E ciTm, ci (z), E C, 
i=0 

such that Td, (a) = Tg~ (b) for di= GCD(n, mi). Since polynomials of different 

degrees are linearly independent over C, we conclude that the polynomials Tin(z ) 
such that Td(a) = Td(b) for d = GCD(n, m) form a basis of the vector space 

V(Tn,a,b). 

2.2 PROOF OF THEOREM 1 FOR NON-SINGULAR a, b. By 2.1 it is enough to 

show that condition (1) with P(z) = Tn(z), q(z) = Q'(z) implies condition (3). 

On the other hand, it is known (see [6] or [9]) that for any polynomial P(z) such 

that a, b are not critical points of P(z) ,  conditions (1) and (2) are equivalent. 

Therefore, it is enough to prove that (2) with P(z) = Tn(z) implies (3). 

Suppose now that (2) holds and set w = degW(z) .  Since by Engstrom's 

theorem (see, e.g., [12], Th. 5) for any double decomposition A(B(z)) = C(D(z)) 
we have 

[C(B, D) : C(D)] = deg D~ GCD(deg B, deg D), 

it follows from the equality 

Tn(z) = P(W(z)) = T~/~(Tw(z)) 

that C(W) = C(Tw). Therefore, since W(z), T~(z) are polynomials, there exists 

a linear function a(z) such that W(z) = a(Tw(z)) and, hence, W(a) = W(b) 
yields Tw(a) = T~(b). Since w is a divisor of d = GCD(n, degQ) the de- 

composition Td(Z) = Td/~(T~(z) ) holds and, therefore, T~(a) = T~(b) implies 

Td(a) = Td(b). 

2 .3  NECESSARY CONDITION FOR P(z),q(z) TO SATISFY (1) .  To  investigate 

the case when at least one of the points a, b is a critical point of Tn(z), we 

will use a condition, obtained for the case when P(a) = P(b) in [8] and in a 

general case in [9], which is necessary for polynomials P(z) ,  q(z) to satisfy (1). 

To formulate this condition let us introduce the following notation. Say that  a 

domain U C C is admissible with respect to the polynomial P(z) if U is simply 
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connected and contains no critical values of P(z). By the monodromy theorem, 
in such a domain there exist n = deg P(z) single-valued branches of p -1  (z). Let 
Up(a) (resp. Up(b)) be an admissible domain such that its boundary contains the 
point P(a) (resp. P(b)). Denote by -1 P~I (z), p~l(z) , . . .  , p ~  (z) (resp. pjll(z), 
p~l (z) , . . .  -1 p -1  (resp. Up(b)) which 'Pvdb (Z)) the branches of (z) defined in Up(a) 
map points close to P(a) (resp. P(b)) to points close to a (resp. b). In particular, 
the number da (resp. rib) equals the multiplicity of the point a (resp. b) with 
respect to P(z). 

In the above notation a necessary condition for P(z), q(z) to satisfy (1) has 
the following form: if polynomials P(z), q(z) = Q'(z) satisfy (1) and P(a) = 
P(b) = Zo, then in any admissible domain Uzo the equality 

(4) 

holds. Furthermore, 
Up(a) we have 

1 da - 1  1 db 

s ~  Q(p~, (z)) = ~ ~--}~ Q(p;l(z)) 

if P(a) ~ P(b) then for any admissible domains Up(a), 

da db 

--1 1 E Q(p~l(z)) = 0 in Up(b). (4') ~1 s=lE Q(Pu.~ (z)) = 0 in Up(a) , dbb s = l  .9 

Here Q(z) = f q(z)dz is chosen in such a way that Q(a) = Q(b) = O. 
More precisely, conditions (4), (4') hold whenever the function 

~a b Q(z)P'(z)dz 
H ( t ) = -t : --P-~( z ) 

is algebraic near infinity; this is a corollary of general properties of the Cauchy 
type integrals of algebraic functions (see [9], section 3). On the other hand, 
using the integration by parts we have: 

dH(t) f b  Q(z)P'(z)dz Q(a) Q(b) 
+/~(t) ,  

dt J~ (t - P(z)) 2 t - P(a) t - P(b) 

where 

~ b q(z)dz 
# ( t )  = 

Hence, since condition (1) is equivalent to the requirement tha t /4( t )  - 0 near 
infinity, it follows from Q(a) = Q(b) = 0 that H(t) is algebraic. Therefore, 
conditions (4), (4') hold. 
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2.4 MONODROMY OF Tn(Z). To make conditions (4), (4') useful we must ex- 

amine the monodromy group of Tn(z). It follows from Tn(cOs r = cos(nr 

n _> 1, that finite critical values of polynomial Tn(Z) are 4-1 and that preim- 

ages of the points •  are points cos(Trj/n), j = 0, 1 , . . . , n .  To visualize the 

monodromy group of Tn(Z) consider the preimage P - l [ - 1 ,  1] of the segment 

[ -1 ,  1] under the map P(z):  C --+ C. It is convenient to consider P - l [ - 1 ,  1] as 

a bicolored graph ,~ embedded into the Riemann sphere. By definition, white 

(resp. black) vertices of A are preimages of the point 1 (resp. - 1 )  and edges of 

,~ are preimages of the interval ( - 1 ,  1). Since the multiplicity of each critical 

point of Tn(z) equals 2, the graph A is a "chain-tree" and, as a point set in 

C, coincides with the segment [-1,  1] (see Figure 1). In particular, non-critical 

points - 1 ,  1 are vertices of valence 1; the vertex 1 is white while the vertex - 1  

is white or black depending on the parity of n. 

In-2 l] ln-1 10 
0 - - - 0  . . . . . . . . . . . . . . . . . . . . . . . . . .  O A w O wA O 

- 1  c o s  c o s  1 

Figure 1 

Let us fix an admissible with respect to Tn(z) domain U such that U is un- 

bounded and contains the interval ( -1 ,  1). Any branch T~J(z),  0 < j <__ n - 1, 

of Tnl(Z) in U maps the interval ( -1 ,  1) onto an edge of A and we will label 

such an edge by the symbol lj (an explicit numeration of the branches of Tn 1 (z) 

will be defined later). Denote by 7t'1 C Sn (resp. 7r_l, ~r~ E Sn) the permuta- 

tion defined by the condition that the analytic continuation of the functional 

element {U, T~J(z)}, 0 < j _< n - 1, along a clockwise oriented loop around 1 

(resp. - 1 ,  oc) is the functional element {U, T~,I (j)(z)} (resp. {U, T -1 

{U,T -1 n,~(j)(z)}). The tree A represents the monodromy group of T~l(z) in 

the following sense: the edges of A are identified with branches of Tn -1 (z) and 

the permutation 7q (resp. 7r_1) is identified with the permutation arising under 

clockwise rotation of edges of A around white (resp. black) vertices.* In order to 

fix a convenient numeration of branches of T~ -1 (z) in U, consider an auxiliary 

domain U~ = U ~ B, where B is a disc with the center at the infinity such that 

* Note that any polynomial with two finite critical values can be represented by 
an appropriate bicolored plane tree and vice versa; it is a very particular case of 
the Grothendieck correspondence between Belyi functions and graphs embedded 
into compact Riemann surfaces (see, e.g., [13]). 
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branches of  T n l ( z )  can be represented in B by their Puiseux expansions at 

infinity. In more detail, if z 1/n denotes a fixed branch of the algebraic function 

which is inverse to z n in U~, then each branch of T~-I (z) can be represented in 

U~ by the convergent series 

1 

(5) C j ( z )  = E t k c J k z k / n '  tk e C, Cn = e x p ( 2 ~ i / n ) ,  

k~--co 

for certain j ,  0 _< j _< n - 1. 

Now we fix a numeration of branches of Tnl(z)  in U as follows: the branch 

T~,,~(z), 0 <_ j <_ n - 1, is the analytic continuation of Cj(z) from Uor to U and 

the branch z 1/n is defined by the condition that  T~, l(z) maps the interval ( -1 ,  1) 

onto the interval (cos(Tr/n), 1). Since the result of the analytic continuation of 

the functional element {U~, cJ zUn} ,  0 <_ j <_ n - 1, along a clockwise oriented 

loop around cc is the functional element {U~,cJn+lzl /u} ,  such a choice of the 

numeration implies that  7r~ = (012 . . .n  - 1). Furthermore, it follows from 

u~Tr_llrl = 1, taking into account the combinatorics of ~, that  the numeration 

of edges of ~ coincides with the one indicated on Figure 1 that  is 7r_l = 

( 0 n -  1 ) ( l n -  2 ) ( 2 n -  3 ) . . .  and 7rl = ( l n -  1 ) ( 2 n -  2 ) ( 3 n -  3) . . . .  

2.5 PROOF OF THEOREM 1 FOR SINGULAR a, b. Again, it is enough to estab- 

lish that  (3) holds. Assume first that  Tn(a) = Tn(b). Let Q'(z )  E V ( T n , a , b )  

with degQ(z) = m. Since at least one of points a, b is a critical point of Tn(z) ,  

the number Zo = Tn(a) = Tn(b) equals +1. Suppose first that  z0 = 1. Then 

a = cos(2jlTr/n),  b = cos(2j27r/n) for certain j l , j 2 ,  0 <_ j l , j 2  <_ [n/2], and 

condition (4) has the following form: 

--1 (6) Q(T~,,~I(Z)) + Q(T~,,~_jl(z))  = Q(T~,,I (z)) + Q(Tn,n_y:(Z))  , 

where T~,~ (z) is represented in Uor by series (5). Since tl ~ 0, the comparison 

of the leading coefficients of the Puiseux expansions of the branches in (6) gives 

4 ,  + = + m. 

m/d 
Therefore, the number e~ , where d = GCD(n, m), is a root of the polynomial 

with integer coefficients 

f ( z )  ---- Z j l d  -[- Z (n - j l ) d  -- Z j2d -- Z (n-j2)d.  

Since c m/d is a primitive n-th root of unity and the n-th cyclotomic polynomial 

~n(Z) is irreducible over Z, this fact implies that  (~n(Z) divides f ( z )  in the ring 
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Z[z] and, therefore,  tha t  the primit ive n- th  roo t  of unity en also is a root  of 

f(z) .  Hence, 
eJnld + e-'~jld = ej2d + ~-~j2d 

Since 

1 
a = cos(2j ,  7r/n) -- ~(e~l" jl + gXjl), b = COS(2j:zr/n) = ~ (E j2 + e ; ' 2 ) ,  

it follows now from 

(7) 

and 

It yields tha t  

which implies 
CJn l m +  E( n - j l - 1 ) m  = EJ 2m § C(: - j 2 - 1 ) m  

c j ld  § ~n(jlq-1)d ___ ~j2d • Cn(J2T1)d. 

Since 

E 2 j l d  -- -2(jl-t-1)d _2j2d -2(j2q-1)d 
2n "[- 5"2n = ~2n § ~2n , 

where e2n = exp(27ri/2n), and, mult iplying the last equal i ty by e d 2n~ we get 

c(2j l+l )d__ -(2j l -bl)d  _(2j2+1)d . - (2 j2+l)d  
2n "~- C2n ---- e2n ~- ~2n " 

1,_2j1+1 - (2 j lq -1 )~  1 ,~2j2-kl ..I- - ( 2 j 2 + 1 ) \  
a = ~(~2~ + ~2,~ ), b = ~(~2n - ~2n ), 

we conclude as above tha t  Td(a) = Td(b). 
Let  us prove now tha t  T~(a) must  be equal to T~(b). Indeed, equalities (4') 

could hold only if da > 1, d b >  1, tha t  is only if bo th  a, b are critical points of 

P(z). Since Tn(Z) has only two critical values •  we see tha t  if Tn(a) # T,~(b) 
then ei ther Tn(a) = 1, Tn(b) = - 1  or Tn(a) = -1 ,  Tn(b) = 1. Let,  say, 

Tn(a) = 1, Tn(b) = - 1 .  Then  a = cos(2jlzr/n), b = cos((2j2 + 1)Tr/n) and (4') 

imply 
C3n lrn § ~(n n - j l ) m  ---- O, C j2m -~ C (n - j 2 -1 )m  = O. 

tha t  Td(a) = Td(b). 
Similarly, if z0 = - 1 ,  assuming tha t  

a = cos((2j l  + 1) i t /n) ,  b = cos((2j2 + 1)Tr/n) 

for certain j l , j2,  0 <_ j l , j2  <_ [(n - 1)/2], we obta in  the equali ty 

Tn , j l ( z )  "k T n , n - j t - l ( Z )  = Tn, j2(z)  § T n , n - j 2 - 1 ( z ) ,  
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The analysis of these equalities similar to the above one leads to the equalities 

Td(a) = 0, Td(b) = 0. Since Tn(z) = Tn/d(Td(Z)) it contradicts Tn(a) r Tn(b). 

2.6  LEMMA ABOUT VALUES OF CHEBYSHEV POLYNOMIALS. In this subsection 

we prove the following lemma. Let a, b E C and pl,p2,p3 C N. Suppose that 

(8) Tp~(a) =Tp2(b), Tp2(a ) =Tp2(b), Tp3(a ) =Tp3(b ). 

Set ll =- GCD(pl ,p2) ,  12 = GCD(pl ,p3),  13 = GCD(p2,p3). Then Tz~(a) = 
Tl~ (b) at least for one i, 1 < i < 3. 

Choose a , ~  E C such that  cosc~ = a, cos~ = b. Since Tn(cosr = cos(nr 

equalities (8) imply that  

(10) Pl(~ -- #lPl/3 -~- 2~gl, P2(~ = #2P2/~ + 2~rg2, P3a = #3P3~ + 21rg3, 

where # l , #2 ,#a  = +1 and gl,g2,g3 E Z. Clearly, at least two numbers from 

the set {#1, #2, it3} are equal between themselves. To be definite suppose that  

#1 = #2. Choose u,v E Z such that  up1 + vp2 = 11. Adding to the first 

equation in (10) multiplied by u the second one multiplied by v, we see that  

llc~ = #1/1/~+ 21rg, where g E Z. It implies that  cosll(~ = cosl l~ and, therefore, 

Tll (a) = Tl 1 (b). 

2.7 PROOF OF THEOREM 2. Suppose q(z) E V(Tn,a,b). Then, by Theorem 

1, f q(z)dz can be represented as a sum 

k 

f q(z)dz = EciT'n~(z) '  ci e C, 
i----0 

where Td~(a) = Td~(b) for di = GCD(n,m~), 0 < i < k. We will prove the 

corollary by induction on k. Since Tin, (z) = Tm,/d~ (Td, (Z)) and Td~ (a) = Td~ (b), 
the corollary is true for k = 0, 1. Suppose now that  k > 1. By the inductive 

assumption there exist r, s E 5t and A(z), B(z) E C[z] such that  

k - 1  

E ciTm~(Z) = A(T~(z))+ B(Ts(z)), 
i=0 

T~(a) = Tr(b), Ts(a) = T~(b). 

Since Trek(a) = Tm~(b) it follows from lemma 2.6 that  either Td(a) = Td(b) for 

d = GCD(r,  s) and 

q(z)dz = C(Td(z)) + CkT,~(z) with C(z) = A(T~/g(z)) + B(Ts/d(Z)), 
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or Te(a) = Te(b) for e = GCD(r,  mk) and 

f q(z)dz = E(Te(z)) + B(Ts(z)) E(z)  = A(T~./e(Z))+ ckTm~/e(Z), with 

or Tf(a) = Tf(b) for f = GCD(s, mk) and 

q(z)dz = A(Tr(z)) F(TI(z))  F(z)  = B ( T s / f ( z ) ) +  ckTm~/f(z). + with 
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