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ABSTRACT

In this paper we describe polynomials orthogonal to all powers of a
Chebyshev polynomial on a segment.

1. Introduction

In the recent series of papers [1]-[5] by M. Briskin, J.-P. Francoise and Y.
Yomdin the following “polynomial moment problem” arose as an infinitesimal
version of the center problem for the Abel differential equation in the com-
plex domain: for a compler polynomial P(z) and distinct a,b € C to describe
polynomials q(z) such that

b
(1) / P'(2)q(z)dz =0 for all integers i > 0.

The following “composition condition” imposed on P(z) and Q(z) = [ ¢(z)d=
is sufficient for polynomials P(z),q(z) to satisfy (1): there ezist polynomials
P(2), Q(z), W(z) such that

2 P(z) = P(W(2)), Q(2)=Q(W(2) and W(a)=W(b).

Indeed, the sufficiency of condition (2) is a direct corollary of the Cauchy the-
orem, since after the change of variable 2 — W(z) the new way of integration
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is closed. It was suggested in the papers cited above (“the composition conjec-
ture”) that, under an additional assumption that P(a) = P(b), condition (1)
is actually equivalent to condition (2). This conjecture was verified in several
special cases. In particular, when a, b are not critical points of P(z) ([6]), when
P(z) is indecomposable ([8]), and in some other special cases ([1]-[5], [11], [9]).
Nevertheless, in general the composition conjecture is not true.

A class of counterexamples to the composition conjecture was constructed in
[7]. The simplest of them has the following form:

P(z) = To(2), q(2) =T3(x) + Ty(2), a=-V3/2, b=V3/2,

where T,(z) = cos(n arccos z) is the n-th Chebyshev polynomial. Indeed, since
T»(V/3/2) = Ta(—/3/2) it follows from the equality Ts(z) = T3(T(z)) that
(1) is satisfied for P(z) = T5(2) and ¢;:(z) = T5(z). Similarly, from T5(2) =
Ty(T3(2)) and T3(v/3/2) = Ts(—+/3/2) one concludes that (1) holds for P(z) =
Ts(z) and ¢2(2z) = T4(z). Therefore, by linearity, condition (1) is satisfied also
for P(z) = Ts(z) and ¢q(2) = q1(2) + g2(2). Nevertheless, for P(z) = T¢(z) and
Q(z) = T3(z) + Tz(2) condition (2) does not hold.

More generally, it was shown in [7] that any polynomial “double decompo-
sition” A(B(z)) = C(D(z)) such that B(a) = B(b), D(a) = D(b) supplies
counterexamples to the composition conjecture whenever deg B(z), deg D(z)
are coprime. Note that double decompositions with deg A(z) = degD(z),
deg B(z) = deg C(z) and deg B(z),deg D(z) coprime are described explicitly by
Ritt’s theory of factorization of polynomials. They are equivalent either to de-
compositions with A(z) = z"R™(z), B(z) = 2™, C(2) = 2™, D(z) = z"R(z™)
for a polynomial R(z) and (n,m) = 1 or to decompositions with A(z) = Tp,(2),
B(z) = Tu(z), C(z) = Th(z), D(2) = Ty(2) for Chebyshev polynomials Ty, (2),
T\ (z) and (n,m) =1 (see [10], [12]).

In this paper we give a solution of the polynomial moment problem (1) in
the case when P(z) is a Chebyshev polynomial T,(z). Denote by V(T,,a,b)
the vector space over C consisting of complex polynomials ¢(z) satisfying (1)
for P(z) = Tn(z). Note that any polynomial T, (z) such that Ty(a) = Tu(b)
for d = GCD(n,m) is contained in V (T, a,b) since T,(z) = T,,/4(T4(z)) and
Ton(2) = Tona(Ta(2).

THEOREM 1: For anyn € N and a,b € C, polynomials T}, (z) such that Ty(a) =
Ty(b) for d = GCD(n,m) form a basis of V (T}, a, b).

For instance, it follows from the theorem that if a polynomial ¢(z) is orthog-
onal to all powers of Tg(2) on {—v/3/2,v/3/2], then [g(z)dz can be uniquely



Vol. 142, 2004 ORTHOGONALITY TO POWERS OF A CHEBYSHEV POLYNOMIAL 275

represented as a finite sum

/q(z)dz = Z apTer(2) + Z b Tort2(2) + Z crTorts3(2) + Z dxTok+a(2)

k

for some ag, b, cx,dp € C.
Theorem 1 implies the following corollary.

COROLLARY: Non-zero polynomials orthogonal to all integer non-negative
powers of Ty, (2) on [a,b] exist if and only if Ty (a) = T, (b).

Indeed, for d|n condition Ty(a) = T4(b) implies that T),(a) = T,(b) since
To(2z) = Tp/4(T4(2)). On the other hand, if T;,(a) = Ty, (b) then for any R(z) €
C[z] the polynomial R(T,(z))T}(z) is contained in V (T, a,b) by (2).

Furthermore, Theorem 1 implies that if ¢(z) € V(T,a,b) then [ g(z)dz can
be represented as a sum of polynomials @; such that condition (2) holds for
P(z) = Tn(z), Q(2) = Q;(z). We show that actually the number of terms in
such a representation can be reduced to two.

THEOREM 2: For any q(z) € V(T,,a,b) there exist divisors dy, ds of n such that
[ q(z)dz = A(Ty, (2)) + B(T4,(2)) for some A(z), B(z) € C[z] and the equalities
Ta,(a) =Ty, (b), Ty, (a) = Ty, (b) hold.

For instance, if a polynomial ¢(z) is orthogonal to all powers of Ts(2) on

[-v3/2,v3/2) then [ g(z)dz = A(Ts(z))+ B(Tx(z)) for some A(z), B(z) € C[z).
Note that such a representation in general is not unique, in contrast to the one
provided by Theorem 1.

2. Proofs

2.1 REDUCTION. First of all, we establish that Theorem 1 can be reduced to
the following statement: if ¢(z) = Q'(z) is contained in V(T,,a,b), then

(3) Ty(a) = Ty(b) for d = GCD(n,deg Q).

In particular, d > 1.

Indeed, assuming that this statement is true the theorem can be deduced as
follows. For ¢(z) € V(Ty,a,b), set mg = degQ(z) and define cg € C by the
condition that the degree of Q1(z) = Q(z) — coTm,(2) is strictly less than my.
Since for dy = GCD(n,mg) the equalities

Tn(Z) = T?’l/d() (Tdo (Z)), Tm()(z) = Tmo/d() (Tdo (2))
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hold, it follows from Ty,(a) = Ty,(b) that T, (z) € V(Ty,a,b). Therefore,
by linearity, Q1(z) € V(Tyn,a,b). If deg@:1(2) = mq then, similarly, for some
¢m, € C we have Q1(2) = ¢m,Tm, (2) + Q2(2), where Q4(z) € V(T,,a,b) and
deg Q2(2) < my.

Continuing in the same way and observing that m;;; < m; we eventually
arrive at the representation

k
/q(z)dz = ZciTmi (2), ¢ €C,
=0
such that Ty, (a) = Ty, (b) for d; = GCD(n,m;). Since polynomials of different
degrees are linearly independent over C, we conclude that the polynomials T}, (z)
such that T;(a) = T4(b) for d = GCD(n,m) form a basis of the vector space
V(Ty,a,b).

2.2 PROOF OF THEOREM 1 FOR NON-SINGULAR a,b. By 2.1 it is enough to
show that condition (1) with P(z) = T,,(2), ¢(z) = Q'(2) implies condition (3).
On the other hand, it is known (see [6] or [9]) that for any polynomial P(z) such
that a,b are not critical points of P(z), conditions (1} and {2} are equivalent.
Therefore, it is enough to prove that (2) with P(z) = Ty,(z) implies (3).

Suppose now that (2) holds and set w = degW(z). Since by Engstrom’s
theorem (see, e.g., [12], Th. 5) for any double decomposition A(B(z)) = C(D(z))
we have

[C(B, D) : C(D)] = deg D/ GCD(deg B, deg D),

it follows from the equality
Tu(2) = P(W(2)) = Tnjw(Tu(2))

that C(W) = C(T, ). Therefore, since W(z), Ty,(2) are polynomials, there exists
a linear function o(z) such that W(z) = (T (2)) and, hence, W(a) = W(b)
yields Ty, (a) = Ty(b). Since w is a divisor of d = GCD(n,deg@) the de-
composition Ty(z) = Ty,{Tw(z)) holds and, therefore, Ty, (a) = T,(b) implies
Ty(a) = Ta(b).

2.3 NECESSARY CONDITION FOR P(z),q(z) TO SATISFY (1). To investigate
the case when at least one of the points a,b is a critical point of T,(z), we
will use a condition, obtained for the case when P(a) = P(b) in [8] and in a
general case in [9], which is necessary for polynomials P(z), q(2) to satisfy (1).
To formulate this condition let us introduce the following notation. Say that a
domain U C C is admissible with respect to the polynomial P(z) if U is simply
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connected and contains no critical values of P(z). By the monodromy theorem,
in such a domain there exist n = deg P(z) single-valued branches of P~!(z). Let
Up(a) (resp. Up(s)) be an admissible domain such that its boundary contains the
point P(a) (resp. P(b)). Denote by py!(2), pyi(2),...pil. (2) (resp. pyl(2),
pt(z), ... ,p;dlb (2)) the branches of P~(z) defined in Upy,) (resp. Upyp)) which
map points close to P(a) (resp. P(b)) to points close to a (resp. b). In particular,
the number d, (resp. dy) equals the multiplicity of the point a (resp. b} with
respect to P(z).

In the above notation a necessary condition for P(z),¢(z) to satisfy (1) has
the following form: if polynomials P(z), q(z) = Q'(z) satisfy (1) and P(a) =
P(b) = zp, then in any admissible domain U, the equality

da.
@ Y Q) - ZQ(p 1)
¢ s=1

holds. Furthermore, if P(a) # P(b) then for any admissible domains Up(y),
Up(a) we have

4) ZQ ) =0 in Upy, dZQ '(2)) = 0 in Up,

Here Q(z) = [ g(2)dz is chosen in such a way that Q(a) = Q(b) = 0.
More prec1sely, conditions (4), (4') hold whenever the function

_ /" Q(2)P'(2)dz
B a t— P(Z)
is algebraic near infinity; this is a corollary of general properties of the Cauchy

type integrals of algebraic functions (see [9], section 3). On the other hand,
using the integration by parts we have:

dH(t) __ ["QR)P'()dz _ _Qa) Q) -
dt (t-P(x)2  t—Pla) t-P()

b
: q(2)dz
H(t) = .
=]
Hence, since condition (1) is equivalent to the requirement that H(t) = 0 near

infinity, it follows from Q(a) = Q(b) = 0 that H(t) is algebraic. Therefore,
conditions (4), (4') hold.

where
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2.4 MONODROMY OF Tp(z). To make conditions (4), (4’) useful we must ex-
amine the monodromy group of Tp,(z). It follows from T),(cos¢) = cos(n¢),
n > 1, that finite critical values of polynomial T,(z) are £1 and that preim-
ages of the points +1 are points cos(rj/n), j = 0,1,...,n. To visualize the
monodromy group of T, (z) consider the preimage P~1[—1,1] of the segment
[-1,1] under the map P(z): C — C. It is convenient to consider P~1[—1,1] as
a bicolored graph A embedded into the Riemann sphere. By definition, white
(resp. black) vertices of A are preimages of the point 1 (resp. ~1) and edges of
A are preimages of the interval (—1,1). Since the multiplicity of each critical
point of T, (2) equals 2, the graph X is a “chain-tree” and, as a point set in
C, coincides with the segment [—1, 1] (see Figure 1). In particular, non-critical
points —1,1 are vertices of valence 1; the vertex 1 is white while the vertex —1
is white or black depending on the parity of n.

lna b lasalo
_ 4r 3m 2 n
1 COS <7COS €08 < €OS & 1

Figure 1

Let us fix an admissible with respect to T,,(z) domain U such that U is un-
bounded and contains the interval (—1,1). Any branch T ;(z), 0<j<n-1,
of T, }(2) in U maps the interval (—1,1) onto an edge of A and we will label
such an edge by the symbol /; (an explicit numeration of the branches of T}, ()
will be defined later). Denote by m; € S, (resp. 7_1,7 € Sy) the permuta-
tion defined by the condition that the analytic continuation of the functional
element {U, T, }(z)}, 0 <j <n -1, along a clockwise oriented loop around 1
(resp. —1, 00) is the functional element {U, Tn:}rl(j) (2)} (resp. {U, T;}r_l(j)(z)},
{U, Tn_,‘}roo(j) (2)}). The tree X represents the monodromy group of T, !(z) in
the following sense: the edges of A are identified with branches of T, !(z) and
the permutation 7y (resp. 7_1) is identified with the permutation arising under
clockwise rotation of edges of A around white (resp. black) vertices.* In order to
fix a convenient numeration of branches of T, !(z) in U, consider an auxiliary
domain U, = UN B, where B is a disc with the center at the infinity such that

* Note that any polynomial with two finite critical values can be represented by
an appropriate bicolored plane tree and vice versa; it is a very particular case of
the Grothendieck correspondence between Belyi functions and graphs embedded
into compact Riemann surfaces (see, e.g., [13]).
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branches of T, 1(z) can be represented in B by their Puiseux expansions at
infinity. In more detail, if z!'/™ denotes a fixed branch of the algebraic function
which is inverse to z" in Uy, then each branch of T, !(z) can be represented in
U by the convergent series

1
(5) ¢i(z) = Z thelk b 4 e €, en = exp(2mi/n),
k=—o00
for certain j, 0<j <n-—1.

Now we fix a numeration of branches of T, !(z) in U as follows: the branch
T,:,;(z), 0 <j <n—1,is the analytic continuation of ¢;(z) from Uy to U and
the branch 2!/ is defined by the condition that T,, 5(z) maps the interval (—1,1)
onto the interval (cos(m/n),1). Since the result of the analytic continuation of
the functional element {Us, €22/}, 0 < j < n — 1, along a clockwise oriented
loop around oo is the functional element {Uy,elt121/"}, such a choice of the
numeration implies that 7o = (012...n — 1). Furthermore, it follows from
TooT—171 = 1, taking into account the combinatorics of A, that the numeration
of edges of A coincides with the one indicated on Figure 1 that is 7_, =
(0n-1)(In-2)2n—-3)...and m = (In — 1)(2n - 2)(3n = 3) ...

2.5 PROOF OF THEOREM 1 FOR SINGULAR a,b. Again, it is enough to estab-
lish that (3) holds. Assume first that T,(a) = T,(b). Let Q'(z) € V(Ty,a,b)
with deg Q(z) = m. Since at least one of points a, b is a critical point of T,(2),
the number zg = Ty, (a) = T, (b) equals £1. Suppose first that 29 = 1. Then
a = cos(2j1m/n), b = cos(2jam/n) for certain ji,j2, 0 < j1,j2 < [n/2], and
condition (4) has the following form:

(6) AT, 5, () + QT ey, (2)) = QT 1, () + QT g, (2)),

where T, 1(#) is represented in Uy, by series (5). Since ¢, # 0, the comparison
of the leading coefficients of the Puiseux expansions of the branches in (6) gives

5%1771 + Egln"jl)m — 8%2771 + 5gzn_j2)m'
Therefore, the number em/ “ where d = GCD(n,m), is a root of the polynomial
with integer coefficients
f(z) = 2914 4 Z(n=d0d _ piad _ (n=f2)d

Since s?/ “isa primitive n-th root of unity and the n-th cyclotomic polynomial
®,(2) is irreducible over Z, this fact implies that ®,(z) divides f(z) in the ring
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Z|z] and, therefore, that the primitive n-th root of unity &, also is a root of

f(z). Hence,
hd —nd _ j2d —Jj2d
et p e N = el2t g2,

Since
; 1 J1 —J1 ; 1 J2 —J2
a = cos(2i1m/n) = 5(6n +e,7), b=cos(2jem/n) = §(sn +¢e,7%),
it follows now from

(7) Td(%(z+ _21.)) e d)

that Td(a) = Td(b).
Similarly, if zp = —1, assuming that

a =cos((271 + 1)x/n), b= cos((2j2 + 1)7/n)
for certain 71, j2, 0 < j1,J2 < [(n — 1)/2], we obtain the equality

Tng (2) + Tnn—jy - 1(2) = Tnjo(2) + Tnn—ja— 1(2),

which implies
g%ﬂn +€'(nn—31—1)m — é.%gm +6£Ln—32—1)m

and
J1d Ji+l)d _ _j2d J2t+1)d
gll +8(1 ) gJz +€(2 )

It yields that

251d

—2{f1+1)d _ 2324 —2(]2+1)d
€9 T Eaq

+e 2n
where €2, = exp(27i/2n), and, multiplying the last equality by e4,,, we get

(2j1+1)d —(2j1+1)d _ (2j2+1)d
62n = &on

—{2j241)d
+€2n (J2+)'

+ &5,

Since

1 _ 1
a= 2(5211+1+ (231+1))’ b= 2(6337’2+1+ 2752J2+1))

we conclude as above that Ty(a) = T4(b).

Let us prove now that Tj,(a) must be equal to Ty, (b). Indeed, equalities (4)
could hold only if d, > 1, d, > 1, that is only if both a,b are critical points of
P(z). Since T,(z) has only two critical values 1, we see that if T(a) # T (b)
then either Ty(a) = 1, Tp(b) = =1 or Th(a) = —1, Th(b) = 1. Let, say,
To(a) = 1, To(b) = —1. Then a = cos(2j17/n), b = cos((2j2 + 1)7/n) and (4')

imply
enm 4 s;"—j”m =0, &2+ s;"—jz—Um =0.
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The analysis of these equalities similar to the above one leads to the equalities
Ty(a) =0, Ta(b) = 0. Since Ty, (2) = T, /4(T4(2)) it contradicts T, (a) # Tn(b).

2.6 LEMMA ABOUT VALUES OF CHEBYSHEV POLYNOMIALS. In this subsection
we prove the following lemma. Let a,b € C and p1,p2,ps € N. Suppose that

(8) Ty, (a) = Ty, (b), Tpyla) = Ty, (b),  Tps(a) = Ty (b)-

Set I} = GCD(p,p2), la = GCD(p1,p3), I3 = GCD(p2,p3). Then Tj,(a) =
T,,(b) at least for one i, 1 <¢ < 3.

Choose a, 8 € C such that cosa = a, cos 8 = b. Since T,(cos ¢) = cos(ng),
equalities (8) imply that

(10) pra=mpB+2rg1, pea=popaf +27gs, psa= pzpsB + 2mgs,

where py, po, s = £1 and ¢q,¢2,93 € Z. Clearly, at least two numbers from
the set {p1, p2, ps} are equal between themselves. To be definite suppose that
1 = po. Choose u,v € Z such that up; + vps = l;. Adding to the first
equation in (10) multiplied by u the second one multiplied by v, we see that
ha =l f+2rg, where g € Z. It implies that coslya = cosl; 8 and, therefore,
T, (a) = Ti, (b).

2.7 PrROOF OF THEOREM 2. Suppose ¢(z) € V(T,,a,b). Then, by Theorem
1, [ g(z)dz can be represented as a sum

k
/q(z)dz = ZCiTmi (2), a€C,
i=0
where Ty, (a) = Ty, (b) for d; = GCD(n,m;), 0 < ¢ < k. We will prove the
corollary by induction on k. Since Trn, (2) = Tpn, /4, (T4,(2)) and Ty, (a) = Ty, (b),

the corollary is true for k¥ = 0,1. Suppose now that & > 1. By the inductive
assumption there exist 7, s € N and A(z), B(z) € C[z] such that

k—1
ZciTmi (2) = A(T:(2)) + B(Ts(2)), Tr(a) =Tw(b), Ts(a) = Ts(b).
=0

Since Tr,,, (@) = Ty, (b) it follows from lemma 2.6 that either Ty(a) = Ty(b) for
d = GCD(r, s) and

/q(Z)dz = C(Tu(2)) + cx Ty (2)  with C(2) = A(Ty/a(2)) + B(Ts4(2)),
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or T.(a) = T.(b) for e = GCD(r,m;,) and
[ 4oz = B + B with B(:) = A(Tye(2) + 6T o(2),
or Tt(a) = Ty(b) for f = GCD(s,my) and

/q(z)dz = A(Tr(2)) + F(T(2)) with F(2) = B(Ts/5(2)) + ek T, j5(2).
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